If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+224x-1323=0
a = 16; b = 224; c = -1323;
Δ = b2-4ac
Δ = 2242-4·16·(-1323)
Δ = 134848
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{134848}=\sqrt{3136*43}=\sqrt{3136}*\sqrt{43}=56\sqrt{43}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(224)-56\sqrt{43}}{2*16}=\frac{-224-56\sqrt{43}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(224)+56\sqrt{43}}{2*16}=\frac{-224+56\sqrt{43}}{32} $
| 3/10x6=E | | 7x+2x=4x+32x= | | 7x+2x=4x+32 | | 3x/5-2=2x | | 3x-2/5=2x | | -a-5a+1=4-2a-3 | | 2y/4=9 | | 12-3x=6-4x | | E^2x+6=16 | | 8=7-1/2x | | 4z=20;z= | | 1,5x-24=2x-26 | | -10s-40=-119 | | 1/5(20-5x)=-2(-2-x)+3 | | 4–(2x+1)=1 | | 5t+20=12 | | 21s+35=77 | | 8l+8=56 | | 7u-35=56 | | 4x-5-x=-x-7 | | 7y+2=-2+2y | | X=5.6-4x=11.2-2x | | 7f=33 | | A+5b=47 | | 6-17=4x+1 | | 10p+27=3p+167 | | 5k-4=25k-20 | | 6x+12=2x+44 | | 5x-5=-x-4 | | 4h-31=29-h | | 3t-8=40 | | 5x=16-4x-40 |